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I. I NTRODUCTION

The theory of set-valued integrals began to develop in the
decade 1956-1965 motivated by solving/modeling problems in
mathematical economy, statistics or control theory. The first
definition of a set-valued integral was given by Dinghas [26]
in 1956 by extending the Riemann integral to the set-valued
case (the Riemann-Minkowski integral). After Aumann [3]
defined in 1965 his integral using selection method, the theory
of set-valued integrals has been intensively studied due to its
interesting and important theoretical or practical applications
(e.g. [11], [12], [17], [20], [24], [33], [41], [43], [44], [46],
[53], [54]).

After Aumann, set-valued integrals have been defined and
studied by many authors using different techniques: by Au-
mann selections ([9], [36], [42], [53]), by embedding theorems
([2], [23]), via Pettis method ([1], [14], [15], [25], [45]), by
Dunford way using defining sequences ([10], [18], [19], [48]),
using finite or infinite Riemann type sums ([4], [5], [6], [7],
[8], [13], [26], [28-31], [34], [37], [38], [40], [47], [49], [51],
[55], [56], [57], [58]), via Gelfand [35] method ([16], [43],
[59]), by Sugeno way ([21, 22], [60]), by Choquet way ([45],
[62]). A survey on different set-valued integrals can be found
for example in [17], [54].

In this paper we define and study a Birkhoff type (called
Birkhoff weak) integral of multifunctionsF (taking values in
the family of nonempty subsets of a real Banach space) relative
to a non-negative set functionµ. Unlike other definitions
that assumeµ to be a measure or finitely additive, in our
definition and in some properties of the set-valued integral,
µ is an arbitrary non-negative set function and this is a great
advantage.

The paper is organized as follows: Section 1 is for intro-
duction. The second section contains some basic concepts and
results. In Section 3 we define the Birkhoff weak integral
of multifunctions relative to a non-negative set function and

present some classic integral properties. In Section 4 we
provide some continuity properties of the set-valued integral.

II. PRELIMINARIES

Let beT be a nonempty set,P(T ) the family of all subsets
of T , A a σ-algebra of subsets ofT, (X, ‖ · ‖) a real Banach
space with the metricd induced by its norm,P0(X) the
family of all nonempty subsets ofX , Pc(X) the family of
all nonempty convex subsets ofX andPf (X) the family of
all nonempty closed subsets ofX .

For everyM,N ∈ P0(X) and everyα ∈ R, let M +N =
{x+ y|x ∈ M, y ∈ N} andαM = {αx|x ∈ M}. We denote
by M the closure ofM with respect to the topology induced
by the norm ofX .

By ”
•
+” we mean the Minkowski addition onP0(X), that

is,

M
•
+N = M +N, ∀M,N ∈ P0(X).

Let h be the Hausdorff metric given by

h(M,N) = max{e(M,N), e(N,M)}, ∀M,N ∈ P0(X),

wheree(M,N) = sup
x∈M

d(x,N) andd(x,N) = inf
y∈N

d(x, y).

We denote|M | = h(M, {0}) = sup
x∈M

||x||, for everyM ∈

P0(X), where0 is the origin ofX .
By i = 1, n we meani ∈ {1, 2, . . . , n}, for n ∈ N

∗,
whereN∗ = N\{0} andN = {0, 1, 2 . . .}. In the following
proposition we recall some properties regarding the excess and
the Hausdorff metric [39].

Proposition 1: [39] Let A,B,C,D,Ai, Bi ∈ P0(X), for
every i = 1, n andn ∈ N

∗. Then:
(i) h(A,B) = h(A,B).
(ii) e(A,B) = 0 if and only if A ⊆ B.
(iii) h(A,B) = 0 if and only if A = B.
(iv) h(αA, αB) = |α|h(A,B), ∀α ∈ R.
(v) h(

∑n

i=1
Ai,
∑n

i=1
Bi) ≤

∑n

i=1
h(Ai, Bi).

(vi) h(αA, βA) ≤ |α− β| · |A|, ∀α, β ∈ R.
(vii) h(αA+ βB, γA+ δB) ≤ |α− γ| · |A|+ |β − δ| · |B|,

∀α, β, γ, δ ∈ R.
(viii) h(A + C,B + C) = h(A,B), for every A,B ∈

Pbfc(X) andC ∈ Pb(X).
(ix) α(A+B) = αA+ αB, ∀α ∈ R.
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(x) (α+β)A = αA+βA, for everyα, β ∈ R, with αβ ≥ 0
and every convexA ∈ P0(X).

(xi) αA ⊆ βA, for everyα, β ∈ R+, with α ≤ β and every
convexA ∈ P0(X), with 0 ∈ A.

Definition 2: (i) A finite (countable, respectively) partition
of T is a finite (countable, respectively) family of nonempty
sets P = {Ai}i=1,n ({An}n∈N, respectively)⊂ A such

that Ai ∩ Aj = ∅, i 6= j and
n⋃

i=1

Ai = T (
⋃
n∈N

An = T ,

respectively).
(ii) If P andP ′ are two finite (or countable) partitions of

T , thenP ′ is said to befiner thanP , denoted byP ≤ P ′ (or,
P ′ ≥ P ), if every set ofP ′ is included in some set ofP .

(iii) The common refinementof two finite or countable
partitions P = {Ai} and P ′ = {Bj} is the partition
P ∧P ′ = {Ai∩Bj}. We denote byP the class of all partitions
of T and if A ∈ A is fixed, byPA we denote the class of all
partitions ofA.

All over the paper,µ : A → [0,+∞) will be a non-negative
function, withµ(∅) = 0.

Definition 3: [27, 46] µ is said to be:
(i) monotoneif µ(A) ≤ µ(B), ∀A,B ∈ A, with A ⊆ B.
(ii) subadditiveif µ(A ∪ B) ≤ µ(A) + µ(B), for every

A,B ∈ A, with A ∩B = ∅.
(iii) a submeasureif µ is monotone and subadditive.

(iv) σ-subadditiveif µ(A) ≤
∞∑
n=0

µ(An), for every sequence

of (pairwise disjoint) sets(An)n∈N ⊂ A, with A =
∞⋃

n=0

An ∈

A.

(v) a (σ-additive) measureif µ(
∞⋃

n=0

An) =
∞∑
n=0

µ(An), for

every sequence of pairwise disjoint sets(An)n∈N ⊂ A.
(vi) finitely additiveif µ(A∪B) = µ(A) +µ(B) for every

disjoint A,B ∈ A.
(vii) increasing convergentif lim

n→∞
µ(An) = µ(A), for

every increasing sequence of sets(An)n∈N ⊂ A (i.e. An ⊂

An+1, for everyn ∈ N), with
∞
∪

n=0
An = A ∈ A (denoted by

An ր A).
(viii) decreasing convergentif lim

n→∞
µ(An) = µ(A), for

every decreasing sequence of sets(An)n∈N ⊂ A (i.e.An+1 ⊂

An, for everyn ∈ N), with
∞
∩

n=0
An = A ∈ A (denoted by

An ց A).
(ix) order-continuous (shortly, o-continuous) if

lim
n→∞

µ(An) = 0, for every decreasing sequence of sets

(An)n∈N ⊂ A, with An ց ∅.
(x) exhaustiveif lim

n→∞
µ(An) = 0, for every sequence of

pairwise disjoint sets(An)n∈N ⊂ A.
Definition 4: [32] Let ϕ : A → P0(X) be a set-valued set

function.ϕ is called:
(i) monotoneif ϕ(A) ⊆ ϕ(B), ∀A,B ∈ A, with A ⊆ B.
(ii) finitely additiveif ϕ(A∪B) = ϕ(A) +ϕ(B) for every

disjoint A,B ∈ A.
(If ϕ is Pf(X)-valued, then in the right side we will have

the Minkowski addition).

(iii) an h-multimeasureif lim
n→∞

h(ϕ(A),
n∑

k=0

ϕ(Ak)) = 0,

for every sequence of mutual disjoint sets(An)n∈N ⊂ A,

with A =
∞⋃

n=0

An ∈ A.

(iv) increasing convergentif lim
n→∞

h(ϕ(An), ϕ(A)) = 0,

for every increasing sequence of sets(An)n∈N ⊂ A, with
∞
∪

n=0
An = A ∈ A.

(v) decreasing convergentif lim
n→∞

h(µ(An), µ(A)) = 0,

for every decreasing sequence of sets(An)n∈N ⊂ A, with
∞
∩

n=0
An = A ∈ A.

(vi) order-continuous (shortly, o-continuous) if
lim
n→∞

|ϕ(An)| = 0, for every decreasing sequence of

sets(An)n∈N ⊂ A, with An ց ∅.
(vii) exhaustiveif lim

n→∞
|ϕ(An)| = 0, for every sequence of

pairwise disjoint sets(An)n∈N ⊂ A.

Definition 5: I. [27] Let µ : A → [0,+∞) be a non-negative
set function.

(i) The variationµ of µ is the set functionµ : P(T ) →

[0,+∞] defined byµ(E) = sup{
n∑

i=1

µ(Ai)}, for everyE ∈

P(T ), where the supremum is extended over all finite families
of pairwise disjoint sets{Ai}ni=1 ⊂ A, with Ai ⊆ E, for every
i = 1, n.

(ii) µ is said to beof finite variation onA if µ(T ) < ∞.
(iii) µ̃ : P(T ) → [0,+∞] is defined for everyA ⊆ T , by

µ̃(A) = inf{µ(B);A ⊆ B,B ∈ A}.

II. [32] Let ϕ : A → P0(X) be a set-valued set function.
(i) The variationϕ of ϕ is the set functionϕ : P(T ) →

[0,+∞] defined byϕ(E) = sup{
n∑

i=1

|ϕ(Ai)|}, for everyE ∈

P(T ), where the supremum is extended over all finite families
of pairwise disjoint sets{Ai}ni=1 ⊂ A, with Ai ⊆ E, for every
i = 1, n.

(ii) ϕ is said to beof finite variation onA if ϕ(T ) < ∞.
(iii) ϕ̃ : P(T ) → [0,+∞] is defined for everyA ⊆ T , by

ϕ̃(A) = inf{ϕ(B);A ⊆ B,B ∈ A}.

Remark 6:I. In vector or set-valued measure/integral theory,
the real functionsµ, µ̃, ϕ, ϕ̃ play an important role since
various problems in vector or set-valued frame can be thus
reduced to the real case.

II. If E ∈ A, then in the definition ofµ we may consider
the supremum over all finite partitions{Ai}ni=1 ⊂ A, of E.

III. µ is monotone and super-additive onP(T ), that is
µ(
⋃
i∈I

Ai) ≥
∑
i∈I

µ(An), for every finite or countable partition

{Ai}i∈I of T .
IV. If µ is subadditive (σ−subadditive, respectively), then

µ is finitely additive (σ-additive, respectively).
V. If µ is a finitely additive set function, thenµ is o-

continuous if and only ifµ is o-continuous onA.
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Definition 7: A property (P) about the points ofT holds
almost everywhere(denotedµ-a.e.) if there existsA ∈ P(T )
so thatµ̃(A) = 0 and (P) holds onT \A.

Definition 8: A multifunction F : T → P0(X) is called
boundedif there exists M∈ [0,+∞) such that|F (t)|≤ M,
for everyt ∈ T.

III. B IRKHOFF WEAK INTEGRABILITY OF

MULTIFUNCTIONS

In this section, we define and study Birkhoff weak inte-
grability of multifunctions and establish some classic integral
properties.

In the sequel, suppose(X, ‖ · ‖) is a Banach space,T is
infinite,A is aσ-algebra of subsets ofT andµ : A → [0,+∞)
is a non-negative set function such thatµ(∅) = 0.

Definition 9: Let be∅ 6= E ⊆ P0(X). A multifunction F :
T → P0(X) is said to beBirkhoff weakµ-integrable inE(on
T ) (shortlyµ-integrable) if there existsE ∈ P0(X) with E ∈
E having the property that for everyε > 0, there exist a
countable partitionPε of T andnε ∈ N such that for every
other countable partitionP = {An}n∈N of T , with P ≥ Pε

and everytn ∈ An, n ∈ N, we haveh(
n∑

k=0

F (tk)µ(Ak), E) <

ε, for everyn ≥ nε.
The setE is called the Birkhoff weakµ-integral of F on

T and is denoted by(Bw)
∫
T
Fdµ or simply

∫
T
Fdµ. If E =

P0(X), thenF is called simplyµ-integrable.
Remark 10:If it exists, the integral is unique.
Example 11:I. If F (t) = {0}, for everyt ∈ T , thenF is

µ-integrable and
∫
T
Fdµ = {0}.

II. SupposeT = {tn|n ∈ N} is countable,{tn} ∈ A and

let F : T → P0(X) be such that the series
∞∑
n=0

F (tn)µ({tn})

is unconditionally convergent. ThenF is µ-integrable and
∫
T
Fdµ =

∞∑
n=0

F (tn)µ({tn}).

III. SupposeF : T → P0(R) is the multifunction defined by
F (t) = [0, f(t)], for everyt ∈ T , wheref : T → [0,+∞) is
a non-negative function. If f isµ-integrable inE = {{a}; a ∈
[0,+∞)} and

∫
T
fdµ = {a}, with a ∈ [0,+∞), thenF is

µ-integrable and
∫
T
Fdµ =[0,a].

Proposition 12: SupposeF : T → P0(X) is bounded. If F
= {0} µ-ae, thenF is µ-integrable and

∫
T
Fdµ = {0}.

Proof. SinceF is bounded, there existsM ∈ [0,∞) so that
|F (t)| ≤ M , for everyt ∈ T .
If M = 0, then the conclusion is obvious.
SupposeM > 0. DenotingA = {t ∈ T ;F (t) 6= {0}} and
sinceF = 0 µ-ae, we havẽµ(A) = 0. Then, for everyε > 0,
there existsBε ∈ A so thatA ⊆ Bε andµ(Bε) < ε/M. Let us
take the partitionPε = {Ci}i∈N of T , such thatC0 = T \Bε,
∞⋃
i=1

Ci = Bε.

Let us consider an arbitrary partitionP of T so thatP ≥ Pε.
Let ti ∈ Di, i ∈ N be arbitrarily chosen. Without any loss of
generality, we suppose thatP = {Di, Ei}i∈N, with pairwise
disjoint Di, Ei such that

⋃
i∈N

Di = C0 and
⋃
i∈N

Ei = Bε.

Let be ti ∈ Di, si ∈ Ei, for everyi ∈ N.
Now, we have for everyn ∈ N:

|
n∑

i=0

F (ti)µ(Di) +

n∑

i=0

F (ti)µ(Ei)| = |
n∑

i=0

F (ti)µ(Ei)| ≤

≤
n∑

i=0

|F (ti)|µ(Ei) ≤ M · µ(Bε) < ε.

Hence,F is µ-integrable and
∫
T
Fdµ = {0}. �

Theorem 13: LetF : T → P0(X) be a µ-integrable
multifunction. ThenF is µ-integrable onA ∈ A if and only
if FχA is µ-integrable onT , whereχA is the characteristic
function of A. In this case,

∫
A
Fdµ =

∫
T
FχAdµ.

Proof. I. Let us suppose thatF is µ-integrable onA ∈ A.
Then for everyε > 0 there exist a partitionP ε

A = {Dn}n∈N ∈
PA andnε ∈ N so that for every partitionPA = {Bm}m∈N

of A with PA ≥ P ε
A and for everysm ∈ Bm,m ∈ N, we have

h(

m∑

i=0

F (si)µ(Bi),

∫

A

Fdµ) < ε, ∀m ≥ nε. (1)

Let us considerPε = P ε
A∪{T \A}, which is a partition ofT .

If P is a partition ofT with P ≥ Pε, then without any loss of
generality we can suppose thatP = {Ci, Di}i∈N with pairwise
disjoint Ci, Di such thatA = ∪∞

i=0Ci and∪∞
i=0Di = T \ A.

Now, for everyti ∈ Ci, si ∈ Di, i ∈ N we get by (1):

h(

n∑

i=0

F (χA)(ti)µ(Ci) +

n∑

i=0

F (χA)(si)µ(Di),

∫

A

Fdµ) =

= h(

n∑

i=0

F (ti)µ(Ci),

∫

A

Fdµ) < ε,

for everyn ≥ nε, which says thatFχA is µ-integrable onT
and

∫
T
FχAdµ =

∫
A
Fdµ.

II. Suppose thatFχA is µ-integrable onT . Then for every
ε > 0 there existPε = {Bn}n∈N ∈ P andnε ∈ N so that for
everyP = {En}n∈N partition of T with P ≥ Pε and every
sn ∈ En, n ∈ N, we have

h(
n∑

k=0

(FχA)(sk)µ(Ek),

∫

T

(FχA)dµ) < ε, ∀n ≥ nε. (2)

Let us considerP ε
A = {Bn∩A}n∈N, which is a partition ofA.

Let us takePA = {Dn}n∈N an arbitrary partition ofA with
PA ≥ P ε

A andP = PA ∪ {T \A}. ThenP ∈ P andP ≥ Pε.
Let us taketn ∈ Dn, n ∈ N ands ∈ T \A. By (2) we obtain

h(

n∑

k=0

F (tk)µ(Dk),

∫

T

FχAdµ) =

= h(
n∑

k=0

(FχA)(tk)µ(Dk) + (FχA)(s)µ(T \A),

∫

T

FχAdµ) < ε,

∀n ≥ nε, which assures thatF is µ-integrable onA. �

Theorem 14: LetF,G : T → P0(X) be µ-integrable
multifunctions. ThenF +G is µ-integrable and

∫

T

(F +G)dµ =

∫

T

Fdµ+

∫

T

Gdµ. (3)
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Proof. Let ε > 0 be arbitrary. SinceF is µ-integrable, then
there existP1 ∈ P andn1

ε ∈ N so that for everyP ∈ P , P =
{An}n∈N, with P ≥ P1 and everytn ∈ An, n ∈ N, we have

h

(
n∑

k=0

F (tk)µ(Ak),

∫

T

Fdµ

)
<

ε

2
, ∀n ≥ n1

ε. (4)

Analogously, becauseG is µ-integrable, there existP2 ∈ P
and n2

ε ∈ N so that for everyP ∈ P , P = {Bn}n∈N, with
P ≥ P2 and everytn ∈ Bn, n ∈ N, we have

h

(
n∑

k=0

G(tk)µ(Bk),

∫

T

Gdµ

)
<

ε

2
, ∀n ≥ n2

ε. (5)

Let beP0 = P1 ∧P2 andn0 = max{n1
ε, n

2
ε}. Then, for every

partitionP = {Cn}n∈N ∈ P , with P ≥ P0 and tn ∈ Cn, n ∈
N, by (4) and (5), we get

h(

n∑

k=0

(F +G)(tk)µ(Ck),

∫

T

Fdµ+

∫

T

Gdµ)

= h(

n∑

k=0

F (tk)µ(Ck) + +

n∑

k=0

G(tk)µ(Ck),

∫

T

Fdµ

+

∫

T

Gdµ) ≤ h(
n∑

k=0

F (tk)µ(Ck),

∫

T

Fdµ)+

+ h(

n∑

k=0

G(tk)µ(Ck),

∫

T

Gdµ) <
ε

2
+

ε

2
= ε.

HenceF +G is µ-integrable and (3) is satisfied. �

Theorem 15: IfF,G : T → P0(X) are µ-integrable
multifunctions, then

h

(∫

T

Fdµ,

∫

T

Gdµ

)
≤ sup

t∈T

h(F (t),G(t))·µ(T ).

Proof. If sup
t∈T

h(F (t), G(t)) = +∞, then the conclusion is

obvious.
Supposesup

t∈T

h(F (t), G(t)) < +∞. Let ε > 0 be arbitrary.

SinceF is µ-integrable, then there existP1 ∈ P andn1
ε ∈ N

so that for everyP = {An}n∈N ∈ P , with P ≥ P1 and
tn ∈ An, n ∈ N, we have

h(

∫

T

Fdµ,

n∑

k=0

F (tk)µ(Ak)) <
ε

4
, ∀n ≥ n1

ε. (6)

Analogously, becauseG is µ-integrable, there existP2 ∈ P
and n2

ε ∈ N such that for everyP = {Bn}n∈N ∈ P , with
P ≥ P2 and tn ∈ Bn, n ∈ N, we have

h(

∫

T

Gdµ,

n∑

k=0

G(tk)µ(Bk)) <
ε

4
, ∀n ≥ n2

ε. (7)

Let beP1 ∧ P2 ∈ P , P = {Cn}n∈N ∈ P , with P ≥ P1 ∧ P2

and tn ∈ Cn, n ∈ N arbitrarily. Consider a fixedn ∈ N, n ≥
max{n1

ε, n
2
ε}. Then from (6) and (7) it results

h(

∫

T

Fdµ,

∫

T

Gdµ) ≤ h(

∫

T

Fdµ,

n∑

k=0

F (tk)µ(Ck))+

+ h(

n∑

k=0

F (tk)µ(Ck),

n∑

k=0

G(tk)µ(Ck))

+ h(

n∑

k=0

G(tk)µ(Ck),

∫

T

Gdµ) <

<
ε

2
+ h(

n∑

k=0

F (tk)µ(Ck),

n∑

k=0

G(tk)µ(Ck)) ≤

≤
ε

2
+

n∑

k=0

h(F (tk), G(tk))µ(Ck) <
ε

2

+ sup
t∈T

h(F (t), G(t)) · µ(T ),

for every ε > 0. This implies h(
∫
T
Fdµ,

∫
T
Gdµ) ≤

sup
t∈T

h(F (t), G(t)) · µ(T ). �

As a consequence of the previous theorem we obtain:
Corollary 16: If F : T → P0(X) is a µ-integrable

multifunction, then

|

∫

T

Fdµ| ≤ sup
t∈T

|F (t)|·µ(T ).

The next result easily follows by the definition.
Theorem 17: LetF : T → P0(X) be a µ-integrable

multifunction andα ∈ R. Then:
I) αF is µ-integrable and

∫

T

αFdµ = α

∫

T

Fdµ.

II) F is αµ-integrable (forα ∈ [0,+∞)) and
∫

T

Fd(αµ) = α

∫

T

Fdµ.

The next two results show that the set-valued integral is
monotone with respect to the multifunction and to the set
function.

Theorem 18: IfF,G : T → P0(X) are µ-integrable
multifunctions so thatF (t) ⊆ G(t), for every t ∈ T , then∫
T
Fdµ ⊆

∫
T
Gdµ.

Proof. Let ε > 0 be arbitrary. SinceF is µ-integrable, there
exist P1 ∈ P andn1

ε ∈ N so that for everyP = {An}n∈N ∈
P , P ≥ P1 and everytn ∈ An, n ∈ N

h(

∫

T

Fdµ,

n∑

k=0

F (tk)µ(Ak)) <
ε

3
, ∀n ≥ n1

ε.

Analogously, sinceG is µ-integrable, there existP2 ∈ P and
n2
ε ∈ N such that for everyP = {Bn}n∈N ∈ P , P ≥ P2 and

everytn ∈ Bn, n ∈ N

h(

∫

T

Gdµ,

n∑

k=0

G(tk)µ(Bk)) <
ε

3
, ∀n ≥ n2

ε.
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ConsiderP0 = P1 ∧ P2. Let P ∈ P be arbitrarily chosen,
with P = {Cn}n∈N ≥ P0. Let be tn ∈ Cn, n ∈ N andn ≥

max{n1
ε, n

2
ε}. We get thath(

∫
T
Fdµ,

n∑
k=0

F (tk)µ(Ck)) < ε
3

and (
∫
T
Gdµ,

n∑
k=0

G(tk)µ(Ck)) <
ε
3
, which imply

e(

∫

T

Fdµ,

∫

T

Gdµ) ≤ h(

∫

T

Fdµ,

n∑

k=0

F (tk)µ(Ck))+

+ e(

n∑

k=0

F (tk)µ(Ck),

n∑

k=0

G(tk)µ(Ck))

+ h(
n∑

k=0

G(tk)µ(Ck),

∫

T

Gdµ)) <

<
2ε

3
+ e(

n∑

k=0

F (tk)µ(Ck),

n∑

k=0

G(tk)µ(Ck)).

From the hypothesis, it results

e(
n∑

k=0

F (tk)µ(Ck),
n∑

k=0

G(tk)µ(Ck)) = 0. Consequently,

e(
∫
T
Fdµ,

∫
T
Gdµ) < 2ε

3
, for every ε > 0, which implies∫

T
Fdµ ⊆

∫
T
Gdµ. �

We analogously obtain the following theorem.
Theorem 19: Let beµ1, µ2 : A → [0,+∞) set func-

tions such thatµ1(A) ≤ µ2(A), for every A ∈ A and
F : T → Pc(X) a simultaneouslyµ1-integrable andµ2-
integrable multifunction such that0 ∈ F (t), for everyt ∈ T .
Then

∫
T
Fdµ1 ⊆

∫
T
Fdµ2.

Theorem 20: Let beµ1, µ2 : A → [0,+∞), with µ1(∅) =
µ2(∅) = 0 and supposeF : T → Pc(X) is bothµ1-integrable
and µ2-integrable. If µ : A → [0,+∞) is the set function
defined byµ(A) = µ1(A) + µ2(A), for everyA ∈ A, thenF
is µ-integrable and

∫
T
Fd(µ1 + µ2) =

∫
T
Fdµ1 +

∫
T
Fdµ2.

Proof. Let ε > 0 be arbitrary. SinceF is µ1-integrable,
then there existP1 ∈ P and n1

ε ∈ N so that for every
P = {An}n∈N ∈ P , P ≥ P1 and tn ∈ An, n ∈ N we have

h

(∫

T

Fdµ1,

n∑

k=0

F (tk)µ1(Ak)

)
<

ε

2
, ∀n ≥ n1

ε. (8)

SinceF is µ2-integrable, there existP2 ∈ P andn2
ε ∈ N so

that for everyP = {Bn}n∈N ∈ P , P ≥ P2 andtn ∈ Bn, n ∈
N we have

h(

∫

T

Fdµ2,

n∑

k=0

F (tk)µ2(Bk)) <
ε

2
, ∀n ≥ n2

ε. (9)

Let ben ≥ max{n1
ε, n

2
ε}, P = {Cn}n∈N ∈ P , P ≥ P1 ∧ P2

and tn ∈ Cn, n ∈ N. Then, by (8) and (9), we get

h(

n∑

k=0

F (tk)µ(Ck),

∫

T

Fdµ1 +

∫

T

Fdµ2) ≤

≤ h(

n∑

k=0

F (tk)µ1(Ck),

∫

T

Fdµ1)

+ h(

n∑

k=0

F (tk)µ2(Ck),

∫

T

Fdµ2) < ε,

which concludes the proof. �

Theorem 21:Supposeµ : A → [0,+∞) is finitely additive.
Let F ,G : T → Pf (X) be multifunctions with
sup
t∈T

h(F (t), G(t)) < +∞ such thatF is µ-integrable and

F = G µ-ae. ThenG is µ-integrable and
∫
T
Fdµ =

∫
T
Gdµ.

Proof. Let beM = sup
t∈T

h(F (t), G(t)). If M = 0, thenF = G

and the conclusion is evident.
SupposeM > 0 and letε > 0 be arbitrary.
SinceF is µ-integrable, there existPε = {An}n∈N

∈ P and
nε ∈ N so that for everyP = {Bn}n∈N, with P ≥ Pε and
everytn ∈ Bn, n ∈ N

h(

n∑

k=0

F (tk)µ(Bk)),

∫

T

Fdµ) <
ε

2
, ∀n ≥ nε. (10)

Let E ⊂ T be such thatF = G on T \E and µ̃(E) = 0.
By the definition ofµ̃, there isA ∈ A so thatE ⊆ A and
µ(A) < ε

4M
.

ConsiderP0 = {A ∩ An, An\A}n∈N ∈ P . Let also be the
arbitrary partitionP = {Bn}n∈N ∈ P , with P ≥ P0 andtn ∈
Bn, n ∈ N. Then, without any loss of generality we suppose
thatBn = B

′

n ∪B
′′

n , with
⋃
n∈N

B
′

n = A and
⋃
n∈N

B
′′

n = T \A.

Consider a fixedn ≥ nε. Sinceµ is finitely additive, by
(10) we get

h(

∫

T

Fdµ,

n∑

k=0

G(tk)µ(Bk)) ≤ h(

∫

T

Fdµ,

n∑

k=0

F (tk)µ(Bk))+

+ h(

n∑

k=0

F (tk)µ(Bk),

n∑

k=0

G(tk)µ(Bk)) <
ε

2

+ h(
n∑

k=0

F (tk)µ(Bk),
n∑

k=0

G(tk)µ(Bk)) ≤

≤
ε

2
+ h(

n∑

k=0

F (tk)µ(B
′

k),

n∑

k=0

G(tk)µ(B
′

k))

+ h(

n∑

k=0

F (tk)µ(B
′′

k ),

n∑

k=0

G(tk)µ(B
′′

k )) ≤

≤
ε

2
+

n∑

k=0

h(F (tk), G(tk))µ(B
′

k) +

n∑

k=0

h(F (tk), G(tk))µ(B
′′

k ).

Since for everyk = 0, n, B
′′

k ⊂ T \ A ⊂ T \ E andF = G
on T \E, then

h(

∫

T

Fdµ,

n∑

k=0

G(tk)µ(Bk)) <
ε

2

+

n∑

k=0

h(F (tk), G(tk)) · µ(B
′

k) ≤

≤
ε

2
+ 2M ·

n∑

k=0

µ(B
′

k) ≤
ε

2
+ 2M ·

n∑

k=0

µ(B
′

k) =

=
ε

2
+ 2M · µ(

n⋃

k=0

B
′

k) ≤
ε

2
+ 2M · µ(A) < ε.

This concludes the proof. �
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IV. PROPERTIES OF THE SET VALUED INTEGRAL

In this section we get some results concerning the properties
of the set multifunctionϕ : A → Pf (X) defined byϕ(A) =∫
A
Fdµ, for every A ∈ A, whereF : T → P0(X) is µ-

integrable on every setA ∈ A.
Theorem 22: LetF : T → P0(X) be a multifunction such

that F is µ-integrable on every setA ∈ A. Then:
I. ϕ ≪ µ (i.e., for everyε > 0, there isδ > 0 such that for

everyA ∈ A with µ(A) < δ, it results|ϕ(A)| < ε).
II. If µ is finitely additive, thenϕ is finitely additive too.
III. SupposeF is Pc(X)-valued. Ifµ is monotone, then the

same isϕ.
IV. SupposeF is bounded.If µ is of finite variation, then

ϕ is of finite variation.
V. If µ is o-continuous (exhaustive respectively), thenϕ is

also o-continuous (exhaustive respectively).
Proof. I. It results from Corollary 3.8.

II. Evidently, ϕ(∅) = {0}. Let beA,B ∈ A, A ∩ B = ∅
andε > 0.

SinceF is µ-integrable onA, there exist a partitionP ε
A =

{Cn}n∈N ∈ PA andn1
ε ∈ N so that for everyP = {En}n∈N ∈

PA, P ≥ P ε
A and tn ∈ En, n ∈ N, we have

h(

∫

A

Fdµ,

n∑

k=0

F (tk)µ(Ek)) <
ε

2
, ∀n ≥ n1

ε. (11)

Analogously, sinceF is µ-integrable onB, we find a
partitionP ε

B = {Dn}n∈N ∈ PB andn2
ε ∈ N so that for every

P = {En}n∈N ∈ PB, with P ≥ P ε
B, andtn ∈ En, n ∈ N, we

have

h(

∫

B

Fdµ,

n∑

k=0

F (tk)µ(Ek)) <
ε

2
, ∀n ≥ n2

ε. (12)

Now, let be the partitionP ε
A∪B = {Cn, Dn}n∈N ∈ PA∪B

and nε = max{n1
ε, n

2
ε}. If we considerP = {En}n∈N ∈

PA∪B such thatP ≥ P ε
A∪B, then from (11) and (12) we have

h(

n∑

k=0

F (tk)µ(Ek),

∫

A

Fdµ
•
+

∫

B

Fdµ)

≤ h(
n∑

k=0

F (tk)µ(Ek ∩A),

∫

A

Fdµ)+

+ h(

n∑

k=0

F (tk)µ(Ek ∩B),

∫

B

Fdµ) < ε, ∀n ≥ nε.

So,
∫
A∪B

Fdµ =
∫
A
Fdµ+

∫
B
Fdµ and thusϕ is finitely

additive.
III. The proof is similar to that of Theorem 3.10.
IV. Let {Ai}i=1,n ⊂ P(T ) be pairwise disjoint sets and

M = sup
t∈T

|F (t)|. By Corollary 3.8 it follows
n∑

i=1

|ϕ(Ai)| ≤ M

n∑
i=1

µ(Ai) ≤ M µ(T ). This impliesϕ(T ) ≤ M µ(T ), for

everyA ∈ A, which assures thatϕ is of finite variation.
V. It results from Corollary 3.8. �

Theorem 23: Supposeµ : A → [0,+∞) is a finitely additive
set function of finite variation. LetF : T → P0 (X ) be a
bounded multifunction such thatF is µ-integrable on every
setA ∈ A andϕ : A → Pf(X) defined byϕ(A) =

∫
A
fdµ,

∀A ∈ A. Then the following properties hold:
I. If µ is o-continuous (increasing convergent respectively),

then the same isϕ.
II. If µ is σ-additive, thenϕ is an h-multimeasure.

Proof. I. The o-continuity follows from Remark 2.6-IV and
Theorem 4.1-V. Now, supposeµ is increasing convergent. Let
ε > 0 be arbitrary and let(An)n∈N∗ ⊂ A be so thatAn ր
A ∈ A. Let M = sup

t∈T

|F (t)|. If M = 0, thenF (t) = 0, for

every t ∈ T and the conclusion is evident. SupposeM > 0.
From Theorem 4.1 - II and Corollary 3.8, we have:

h(ϕ(An), ϕ(A)) (13)

= h(

∫

An

Fdµ,

∫

An

Fdµ+

∫

A\An

Fdµ) ≤

≤ |

∫

A\An

Fdµ| ≤ Mµ(A\An) = M(µ(A)− µ(An)).

Now, let {Bi}i=1,m ⊂ A be an arbitrary partition ofA.
ThenBi ∩An ⊂ Bi ∩An+1, for everyn ∈ N

∗, i = 1,m, and
∞⋃
n=1

(Bi ∩An) = Bi ∩A = Bi, for everyi = 1,m. Sinceµ is

increasing convergent, for everyi = 1,m, there existsni
0(ε) ∈

N so that, for everyn ≥ ni
0(ε), µ(Bi)− µ(Bi ∩An) <

ε
2i·M .

Consequently,
m∑

i=1

µ(Bi) ≤
m∑

i=1

µ(Bi ∩ An) +

m∑

i=1

ε

2i ·M
< µ(An) +

ε

M
,

for everyn ≥ n0 = max
i=1,m

{ni
0(ε)}.

Then µ(A) ≤ µ(An) +
ε
M

and by (13) it results ϕ is
increasing convergent.

II. Let (An)n∈N∗ ⊂ A be a sequence of pairwise disjoint

sets, with
∞⋃
n=1

An = A ∈ A. Sinceµ is σ-additive, then it is o-

continuous, so, by I, the same is true for the set multifunction

ϕ. BecauseBn =
∞⋃

k=n+1

Akց∅ and (Bn)n∈N∗ ⊂ A, there

existsn0(ε) ∈ N
∗ so that|ϕ(Bn)| < ε, for everyn ≥ n0(ε).

Sinceϕ is finitely additive, we have

h(ϕ(A),

n∑

k=1

ϕ(Ak)) = h(

n∑

k=1

ϕ(Ak) + ϕ(Bn),

n∑

k=1

ϕ(Ak))

≤ |ϕ(Bn)| < ε,

for everyn ≥ n0, that is,ϕ is anh-multimeasure. �

V. CONCLUSIONS

We have defined and studied Birkhoff weak integrability
of multifunctions (taking values in the family of nonempty
subsets of a real Banach space) relative to a non-negative
set function. Some properties of the set-valued integral are
obtained such as linearity, monotonicity, continuity.
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Since the definition of Birkhoff weak integral is similar to
the definitions of Birkhoff and Gould integrals, one has to
compare these three types of set-valued integrals and this will
be the subject of our future works.

As open problems:
1. Integrability is usually related to measurability. So, it has

to see if there exists a relationship between Birkhoff weak
integrability and some measurability type of multifunctions.

2. As it is known in functions case, Birkhoff integrability
lies strictly between Bochner and Pettis integrability. Thus, it
has to compare this Birkhoff weak set-valued integral with
other types of set-valued integrals: Pettis, Dunford, Aumann,
McShane, Henstock-Kurzweil etc.
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